1
0
Fork 0
rki-impfparser/plot.py

111 lines
3 KiB
Python
Raw Normal View History

#!/usr/bin/python
# vim: set fileencoding=utf-8 :
2021-01-14 23:16:40 +00:00
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import datetime
import re
import requests as req
2021-01-14 23:16:40 +00:00
einwohner_deutschland = 83190556
today = datetime.date.today()
print_today = today.isoformat()
filename_now = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
2021-01-14 23:16:40 +00:00
# DIN A4 Plots
plt.rcParams["figure.figsize"] = [11.69, 8.27]
# Download
filename = '{}_Impfquotenmonitoring.xlsx'.format(filename_now)
r = req.get('https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Daten/Impfquotenmonitoring.xlsx?__blob=publicationFile')
with open(filename, 'wb') as outfile:
outfile.write(r.content)
rki_file = pd.read_excel(filename, sheet_name=None, engine='openpyxl')
raw_data = rki_file['Impfungen_proTag']
2021-01-14 23:16:40 +00:00
impfungen = raw_data[:-1].dropna()
dates = impfungen['Datum']
daily = impfungen['Gesamtzahl Impfungen']
cumulative = np.cumsum(impfungen['Gesamtzahl Impfungen'])
mean_vaccinations_daily = np.mean(daily)
to_be_vaccinated = einwohner_deutschland - np.sum(daily)
days_extrapolated = int(np.ceil(to_be_vaccinated / mean_vaccinations_daily))
extrapolated_dates = np.array([dates[0] + datetime.timedelta(days=i) for i in range(days_extrapolated)])
extrapolated_vaccinations = mean_vaccinations_daily * range(days_extrapolated)
# Stand aus Daten auslesen
#stand = dates.iloc[-1]
#print_stand = stand.isoformat()
# Stand aus offiziellen Angaben auslesen
stand = rki_file['Erläuterung'].iloc[1][0]
2021-01-14 23:16:40 +00:00
stand_regex = re.compile('^Datenstand: (\d\d.\d\d.\d\d\d\d, \d\d:\d\d) Uhr$')
m = stand_regex.match(stand)
stand_date = datetime.datetime.strptime(m.groups()[0], '%d.%m.%Y, %H:%M')
print_stand = stand_date.isoformat()
filename_stand = stand_date.strftime("%Y%m%d%H%M%S")
def plot_extrapolation_portion(percentage):
fig, ax = plt.subplots(1)
print_percentage = int(percentage * 100)
plt.title(
'Tägliche Impfquote, kumulierte Impfungen und lineare Extrapolation bis {} % der Bevölkerung Deutschlands\n'
'Erstellung: {}, Datenquelle: RKI, Stand: {}'.format(print_percentage, print_today, print_stand)
)
ax2 = ax.twinx()
ax.bar(dates, daily, label='Tägliche Impfungen')
ax2.set_ylim([0, einwohner_deutschland * percentage])
ax2.set_xlim(xmax=dates[0] + datetime.timedelta(days=percentage * days_extrapolated))
ax2.grid(True)
ax2.plot(dates, cumulative, color='red', label='Kumulierte Impfungen')
ax2.plot(extrapolated_dates, extrapolated_vaccinations, color='orange', label='Kumulierte Impfungen (linear extrap.)')
#ax2.plot()
ax.legend(loc='upper left')
ax.get_yaxis().get_major_formatter().set_scientific(False)
ax.set_xlabel('Datum')
ax.set_ylabel('Tägliche Impfungen')
ax2.legend(loc='center right')
ax2.get_yaxis().get_major_formatter().set_scientific(False)
ax2.axline((0, einwohner_deutschland * 0.7), slope=0, color='green')
ax2.set_ylabel('Kumulierte Impfungen')
plt.savefig('{}_extrapolated_to_{}_percent.pdf'.format(filename_stand, print_percentage))
plt.close()
plot_extrapolation_portion(0.1)
plot_extrapolation_portion(1.0)