feat: Initial working version
This commit is contained in:
commit
7d97f96fe7
2 changed files with 90 additions and 0 deletions
2
.gitignore
vendored
Normal file
2
.gitignore
vendored
Normal file
|
@ -0,0 +1,2 @@
|
||||||
|
*.pdf
|
||||||
|
*.xlsx
|
88
plot.py
Normal file
88
plot.py
Normal file
|
@ -0,0 +1,88 @@
|
||||||
|
import numpy as np
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
import datetime
|
||||||
|
import re
|
||||||
|
|
||||||
|
einwohner_deutschland = 83190556
|
||||||
|
|
||||||
|
|
||||||
|
# DIN A4 Plots
|
||||||
|
plt.rcParams["figure.figsize"] = [11.69, 8.27]
|
||||||
|
|
||||||
|
raw_data = pd.read_excel('Impfquotenmonitoring.xlsx', sheet_name='Impfungen_proTag', engine='openpyxl')
|
||||||
|
|
||||||
|
impfungen = raw_data[:-1].dropna()
|
||||||
|
|
||||||
|
dates = impfungen['Datum']
|
||||||
|
daily = impfungen['Gesamtzahl Impfungen']
|
||||||
|
cumulative = np.cumsum(impfungen['Gesamtzahl Impfungen'])
|
||||||
|
|
||||||
|
mean_vaccinations_daily = np.mean(daily)
|
||||||
|
|
||||||
|
to_be_vaccinated = einwohner_deutschland - np.sum(daily)
|
||||||
|
days_extrapolated = int(np.ceil(to_be_vaccinated / mean_vaccinations_daily))
|
||||||
|
|
||||||
|
extrapolated_dates = np.array([dates[0] + datetime.timedelta(days=i) for i in range(days_extrapolated)])
|
||||||
|
|
||||||
|
extrapolated_vaccinations = mean_vaccinations_daily * range(days_extrapolated)
|
||||||
|
|
||||||
|
|
||||||
|
# Stand aus Daten auslesen
|
||||||
|
#stand = dates.iloc[-1]
|
||||||
|
#print_stand = stand.isoformat()
|
||||||
|
|
||||||
|
# Stand aus offiziellen Angaben auslesen
|
||||||
|
stand = pd.read_excel('Impfquotenmonitoring.xlsx', sheet_name='Erläuterung', engine='openpyxl').iloc[1][0]
|
||||||
|
print(stand)
|
||||||
|
|
||||||
|
stand_regex = re.compile('^Datenstand: (\d\d.\d\d.\d\d\d\d, \d\d:\d\d) Uhr$')
|
||||||
|
m = stand_regex.match(stand)
|
||||||
|
stand_date = datetime.datetime.strptime(m.groups()[0], '%d.%m.%Y, %H:%M')
|
||||||
|
print_stand = stand_date.isoformat()
|
||||||
|
|
||||||
|
filename_stand = stand_date.strftime("%Y%m%d%H%M%S")
|
||||||
|
|
||||||
|
def plot_extrapolation_portion(percentage):
|
||||||
|
|
||||||
|
fig, ax = plt.subplots(1)
|
||||||
|
|
||||||
|
print_percentage = int(percentage * 100)
|
||||||
|
print_today = datetime.date.today().isoformat()
|
||||||
|
|
||||||
|
plt.title(
|
||||||
|
'Tägliche Impfquote, kumulierte Impfungen und lineare Extrapolation bis {} % der Bevölkerung Deutschlands\n'
|
||||||
|
'Erstellung: {}, Datenquelle: RKI, Stand: {}'.format(print_percentage, print_today, print_stand)
|
||||||
|
)
|
||||||
|
|
||||||
|
ax2 = ax.twinx()
|
||||||
|
|
||||||
|
ax.bar(dates, daily, label='Tägliche Impfungen')
|
||||||
|
|
||||||
|
ax2.set_ylim([0, einwohner_deutschland * percentage])
|
||||||
|
ax2.set_xlim(xmax=dates[0] + datetime.timedelta(days=percentage * days_extrapolated))
|
||||||
|
ax2.grid(True)
|
||||||
|
ax2.plot(dates, cumulative, color='red', label='Kumulierte Impfungen')
|
||||||
|
ax2.plot(extrapolated_dates, extrapolated_vaccinations, color='orange', label='Kumulierte Impfungen (linear extrap.)')
|
||||||
|
#ax2.plot()
|
||||||
|
|
||||||
|
ax.legend(loc='upper left')
|
||||||
|
ax.get_yaxis().get_major_formatter().set_scientific(False)
|
||||||
|
|
||||||
|
ax.set_xlabel('Datum')
|
||||||
|
ax.set_ylabel('Tägliche Impfungen')
|
||||||
|
|
||||||
|
ax2.legend(loc='center right')
|
||||||
|
ax2.get_yaxis().get_major_formatter().set_scientific(False)
|
||||||
|
|
||||||
|
ax2.axline((0, einwohner_deutschland * 0.7), slope=0, color='green')
|
||||||
|
|
||||||
|
ax2.set_ylabel('Kumulierte Impfungen')
|
||||||
|
|
||||||
|
plt.savefig('{}_extrapolated_to_{}_percent.pdf'.format(filename_stand, print_percentage))
|
||||||
|
plt.close()
|
||||||
|
|
||||||
|
|
||||||
|
plot_extrapolation_portion(0.1)
|
||||||
|
plot_extrapolation_portion(1.0)
|
Loading…
Reference in a new issue