From a3bf0654f9c7aaeb763d034429b4f19de1b63752 Mon Sep 17 00:00:00 2001 From: Benedikt Bastin Date: Wed, 17 Feb 2021 11:55:30 +0100 Subject: [PATCH] feat: New plot for vaccination rates --- plot.py | 63 ++++++++++++++++++++++++++++++++++++++++++++++++++++----- 1 file changed, 58 insertions(+), 5 deletions(-) diff --git a/plot.py b/plot.py index bdf325f..eb15aae 100644 --- a/plot.py +++ b/plot.py @@ -14,6 +14,7 @@ import requests as req import locale import os.path import shutil +import math from matplotlib.dates import date2num import matplotlib.ticker as mtick @@ -67,7 +68,6 @@ dates = impfungen['Datum'] start_of_reporting_date = dates.iloc[0].date() def calculate_vaccination_data(data): - cumulative = np.cumsum(data) total = int(np.sum(data)) total_percentage = float(total) / einwohner_deutschland * 100 @@ -80,7 +80,11 @@ def calculate_vaccination_data(data): days_since_start_of_vaccination = (last_date - start_of_vaccination_date).days days_since_start_of_reporting = (last_date - start_of_reporting_date).days - mean_all_time = np.mean(data[start_of_vaccination_index:]) + valid_data = data[start_of_vaccination_index:] + + cumulative = np.concatenate(([math.nan] * (days_since_start_of_reporting - days_since_start_of_vaccination), np.cumsum(valid_data))) + + mean_all_time = np.mean(valid_data) mean_seven_days = np.mean(data[-7:]) def extrapolate(rate, to_be_vaccinated): @@ -110,7 +114,7 @@ def calculate_vaccination_data(data): extrapolation_mean_seven_days = extrapolate(mean_seven_days, to_be_vaccinated) mean_vaccination_rates_daily = np.round(cumulative / range(1, len(cumulative) + 1)) - + vaccination_rates_daily_rolling_average = data.rolling(7).mean() vaccinations_missing_until_target = einwohner_deutschland * 0.7 - total vaccination_rate_needed_for_target = vaccinations_missing_until_target / days_until_target @@ -131,6 +135,7 @@ def calculate_vaccination_data(data): 'extrapolation_last_rate': extrapolation_last_rate, 'extrapolation_mean_seven_days': extrapolation_mean_seven_days, 'mean_vaccination_rates_daily': mean_vaccination_rates_daily, + 'vaccination_rates_daily_rolling_average': vaccination_rates_daily_rolling_average, 'vaccinations_missing_until_target': int(np.floor(vaccinations_missing_until_target)), 'vaccination_rate_needed_for_target': int(np.floor(vaccination_rate_needed_for_target)), 'vaccination_rate_needed_for_target_percentage': vaccination_rate_needed_for_target_percentage @@ -506,7 +511,7 @@ def plot_cumulative_two_vaccinations(): ax.fill_between(dates, first_vaccinations_cumulative, label='Erstimpfungen', color='blue') ax.fill_between(dates, second_vaccinations_cumulative, label='Zweitimpfungen', color='lightblue') - ax.set_ylim([0, first_vaccinations_cumulative.iloc[-1]]) + ax.set_ylim([0, first_vaccinations_cumulative[-1]]) ax.legend(loc='upper left') ax.xaxis_date() @@ -597,7 +602,7 @@ def plot_people_between_first_and_second(): ax.grid() first_vaccinations_cumulative = data_first_vaccination['cumulative'] - second_vaccinations_cumulative = data_second_vaccination['cumulative'] + second_vaccinations_cumulative = np.nan_to_num(data_second_vaccination['cumulative'], nan=0) people_between = first_vaccinations_cumulative - second_vaccinations_cumulative @@ -625,6 +630,54 @@ def plot_people_between_first_and_second(): plot_people_between_first_and_second() +def plot_vaccination_rate(): + + archive_plot_filename = '{}/vaccination_rate'.format(archive_folder) + latest_plot_filename = '{}/vaccination_rate'.format(site_folder) + + #if os.path.isfile(archive_plot_filename + '.pdf'): + #print('Plot {} already exists'.format(archive_plot_filename)) + #return + + fig, ax = plt.subplots(1) + + + plt.title( + 'Tägliche Impfrate sowie durchschnittliche Impfrate\n' + 'Datenquelle: RKI, Stand: {}. Erstellung: {}, Ersteller: Benedikt Bastin, Lizenz: CC BY-SA 4.0\n'.format( + print_stand, print_today + ) + ) + + ax.plot(dates, data_first_vaccination['daily'], label='Tägliche Erstimpfrate', color='blue', linewidth=0.5) + ax.plot(dates, data_second_vaccination['daily'], label='Tägliche Zweitimpfrate', color='lightblue', linewidth=0.5) + + ax.plot(dates, data_first_vaccination['vaccination_rates_daily_rolling_average'], color='blue', linewidth=2, label='Erstimpfrate über sieben Tage') + ax.plot(dates, data_second_vaccination['vaccination_rates_daily_rolling_average'], color='lightblue', linewidth=2, label='Zweitimpfrate über sieben Tage') + + + ax.plot(dates, data_first_vaccination['mean_vaccination_rates_daily'], color='violet', label='Durchschnittliche Erstimpfrate\nbis zu diesem Tag (inkl.)') + ax.plot(dates, data_second_vaccination['mean_vaccination_rates_daily'], color='magenta', label='Durchschnittliche Zweitimpfrate\nbis zu diesem Tag (inkl.)') + + + ax.grid(True) + + + ax.legend(loc='upper left') + ax.get_yaxis().get_major_formatter().set_scientific(False) + + ax.set_xlabel('Datum') + ax.set_ylabel('Impfrate [Impfungen/Tag]') + + plt.savefig(archive_plot_filename + '.pdf') + plt.savefig(archive_plot_filename + '.png') + plt.savefig(latest_plot_filename + '.pdf') + plt.savefig(latest_plot_filename + '.png') + plt.close() + + print('Created plot {} as pdf and png'.format(archive_plot_filename)) + +plot_vaccination_rate() def render_dashboard(): dashboard_filename = 'site/index.xhtml'