832 lines
27 KiB
Python
832 lines
27 KiB
Python
#!/usr/bin/python
|
||
# vim: set fileencoding=utf-8 :
|
||
|
||
# Copyright (C) Benedikt Bastin, 2021
|
||
# SPDX-License-Identifier: EUPL-1.2
|
||
|
||
import numpy as np
|
||
import matplotlib.pyplot as plt
|
||
import pandas as pd
|
||
|
||
import datetime
|
||
import re
|
||
import requests as req
|
||
import locale
|
||
import os.path
|
||
import shutil
|
||
import math
|
||
from functools import reduce
|
||
|
||
from matplotlib.dates import date2num, DateFormatter, WeekdayLocator
|
||
import matplotlib.dates as mdates
|
||
import matplotlib.ticker as mtick
|
||
|
||
from isoweek import Week
|
||
|
||
locale.setlocale(locale.LC_ALL, 'de_DE.UTF-8')
|
||
|
||
site_folder = 'site/'
|
||
data_folder = 'data/'
|
||
|
||
einwohner_deutschland = 83190556
|
||
herd_immunity = 0.7
|
||
|
||
|
||
today = datetime.date.today()
|
||
print_today = today.isoformat()
|
||
|
||
filename_now = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
|
||
|
||
force_renew = True
|
||
|
||
# https://www.tagesschau.de/ausland/europa/ursula-von-der-leyen-zu-corona-impfstoffen-101.html
|
||
target_date_for_herd_immunity = datetime.date(2021, 9, 22)
|
||
days_until_target = (target_date_for_herd_immunity - today).days - 21
|
||
|
||
|
||
# DIN A4 Plots
|
||
plt.rcParams["figure.figsize"] = [11.69, 8.27]
|
||
|
||
|
||
# Download
|
||
|
||
data_filename = '{}/{}_Impfquotenmonitoring.xlsx'.format(data_folder, filename_now)
|
||
|
||
r = req.get('https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Daten/Impfquotenmonitoring.xlsx?__blob=publicationFile')
|
||
|
||
with open(data_filename, 'wb') as outfile:
|
||
outfile.write(r.content)
|
||
|
||
#data_filename = 'data/20210118151908_Impfquotenmonitoring.xlsx'
|
||
|
||
rki_file = pd.read_excel(data_filename, sheet_name=None, engine='openpyxl')
|
||
|
||
raw_data = rki_file['Impfungen_proTag']
|
||
|
||
impfungen = raw_data[:-1].dropna(subset=['Datum'])#.fillna(0)
|
||
|
||
impfungen.drop(impfungen.tail(3).index,inplace=True) # remove Gesamt row
|
||
|
||
dates = impfungen['Datum']
|
||
|
||
start_of_reporting_date = dates.iloc[0].date()
|
||
|
||
def calculate_vaccination_data(data):
|
||
|
||
total = int(np.sum(data))
|
||
total_percentage = float(total) / einwohner_deutschland * 100
|
||
|
||
to_be_vaccinated = einwohner_deutschland - total
|
||
|
||
last_date = dates.iloc[-1].date()
|
||
start_of_vaccination_index = (data != 0).argmax(axis=0)
|
||
start_of_vaccination_date = dates[start_of_vaccination_index].date()
|
||
days_since_start_of_vaccination = (last_date - start_of_vaccination_date).days
|
||
days_since_start_of_reporting = (last_date - start_of_reporting_date).days
|
||
|
||
valid_data = data[start_of_vaccination_index:]
|
||
|
||
cumulative = np.concatenate(([math.nan] * (days_since_start_of_reporting - days_since_start_of_vaccination), np.cumsum(valid_data)))
|
||
|
||
mean_all_time = np.mean(valid_data)
|
||
mean_seven_days = np.mean(data[-7:])
|
||
|
||
vaccinations_by_week_map = map(lambda x: (Week.withdate(x[0]), x[1]), zip(dates, data))
|
||
|
||
vaccinations_by_week = {}
|
||
|
||
for w, v in vaccinations_by_week_map:
|
||
if w in vaccinations_by_week:
|
||
vaccinations_by_week[w] = vaccinations_by_week[w] + v
|
||
else:
|
||
vaccinations_by_week[w] = v
|
||
|
||
|
||
def extrapolate(rate, to_be_vaccinated):
|
||
days_extrapolated = int(np.ceil(to_be_vaccinated / rate))
|
||
extrapolated_dates = np.array([dates[0] + datetime.timedelta(days=i) for i in range(days_extrapolated)])
|
||
|
||
date_done = extrapolated_dates[-1]
|
||
date_herd_immunity = extrapolated_dates[int(np.ceil(days_extrapolated * herd_immunity))]
|
||
|
||
extrapolated_vaccinations = total + rate * range(-days_since_start_of_reporting, days_extrapolated - days_since_start_of_reporting)
|
||
|
||
return {
|
||
'rate': rate,
|
||
'rate_int': int(np.round(rate)),
|
||
'days_extrapolated': days_extrapolated,
|
||
'dates': extrapolated_dates,
|
||
'date_done': date_done,
|
||
'date_done_str': date_done.strftime('%d. %B %Y'),
|
||
'date_herd_immunity': date_herd_immunity,
|
||
'date_herd_immunity_str': date_herd_immunity.strftime('%d. %B %Y'),
|
||
'extrapolated_vaccinations': extrapolated_vaccinations
|
||
}
|
||
|
||
|
||
extrapolation_mean_all_time = extrapolate(mean_all_time, to_be_vaccinated)
|
||
extrapolation_last_rate = extrapolate(data.iloc[-1], to_be_vaccinated)
|
||
extrapolation_mean_seven_days = extrapolate(mean_seven_days, to_be_vaccinated)
|
||
|
||
mean_vaccination_rates_daily = np.round(cumulative / range(1, len(cumulative) + 1))
|
||
vaccination_rates_daily_rolling_average = data.rolling(7).mean()
|
||
|
||
vaccinations_missing_until_target = einwohner_deutschland * 0.7 - total
|
||
vaccination_rate_needed_for_target = vaccinations_missing_until_target / days_until_target
|
||
vaccination_rate_needed_for_target_percentage = mean_all_time / vaccination_rate_needed_for_target * 100
|
||
|
||
return {
|
||
'daily': data,
|
||
'cumulative': cumulative,
|
||
'total': total,
|
||
'total_percentage': total_percentage,
|
||
'to_be_vaccinated': to_be_vaccinated,
|
||
'last_date': last_date,
|
||
'last_date_str': last_date.strftime('%d. %B %Y'),
|
||
'days_since_start': days_since_start_of_vaccination + 1, # Shift from zero to one-based-index
|
||
'start_of_vaccination_date': start_of_vaccination_date,
|
||
'start_of_vaccination_date_str': start_of_vaccination_date.strftime('%d. %B %Y'),
|
||
'vaccinations_by_week': vaccinations_by_week,
|
||
'extrapolation_mean_all_time': extrapolation_mean_all_time,
|
||
'extrapolation_last_rate': extrapolation_last_rate,
|
||
'extrapolation_mean_seven_days': extrapolation_mean_seven_days,
|
||
'mean_vaccination_rates_daily': mean_vaccination_rates_daily,
|
||
'vaccination_rates_daily_rolling_average': vaccination_rates_daily_rolling_average,
|
||
'vaccinations_missing_until_target': int(np.floor(vaccinations_missing_until_target)),
|
||
'vaccination_rate_needed_for_target': int(np.floor(vaccination_rate_needed_for_target)),
|
||
'vaccination_rate_needed_for_target_percentage': vaccination_rate_needed_for_target_percentage
|
||
}
|
||
|
||
|
||
data_first_vaccination = calculate_vaccination_data(impfungen['Erstimpfung'])
|
||
data_second_vaccination = calculate_vaccination_data(impfungen['Zweitimpfung'])
|
||
|
||
# Stand aus Daten auslesen
|
||
#stand = dates.iloc[-1]
|
||
#print_stand = stand.isoformat()
|
||
|
||
# Stand aus offiziellen Angaben auslesen
|
||
stand = rki_file['Erläuterung'].iloc[1][0]
|
||
|
||
stand_regex = re.compile('^Datenstand: (\d\d.\d\d.\d\d\d\d, \d?\d:\d\d) Uhr$')
|
||
m = stand_regex.match(stand)
|
||
stand_date = datetime.datetime.strptime(m.groups()[0], '%d.%m.%Y, %H:%M')
|
||
print_stand = stand_date.isoformat()
|
||
|
||
filename_stand = stand_date.strftime("%Y%m%d%H%M%S")
|
||
|
||
|
||
'''
|
||
|
||
# Infos der einzelnen Länder
|
||
details_sheet_name = (set(rki_file.keys()) - {'Erläuterung', 'Impfungen_proTag'}).pop()
|
||
|
||
details_sheet = rki_file[details_sheet_name]
|
||
|
||
regionalcodes = details_sheet['RS'].iloc[0:17]
|
||
land_names = details_sheet['Bundesland'].iloc[0:17]
|
||
|
||
total_vaccinations_by_land = details_sheet['Impfungen kumulativ'].iloc[0:17]
|
||
vaccination_per_mille_by_land = details_sheet['Impfungen pro 1.000 Einwohner'].iloc[0:17]
|
||
|
||
vaccination_reason_age_by_land = details_sheet['Indikation nach Alter*'].iloc[0:17]
|
||
vaccination_reason_job_by_land = details_sheet['Berufliche Indikation*'].iloc[0:17]
|
||
vaccination_reason_medical_by_land = details_sheet['Medizinische Indikation*'].iloc[0:17]
|
||
vaccination_reason_oldhome_by_land = details_sheet['Pflegeheim-bewohnerIn*'].iloc[0:17]
|
||
|
||
details_per_land = {}
|
||
details_per_land_formatted = {}
|
||
|
||
# Regionalcodes der Länder zu Abkürzung und Name (Plus gesamt)
|
||
laendernamen = [
|
||
('SH', 'Schleswig-Holstein'),
|
||
('HH', 'Hamburg'),
|
||
('NI', 'Niedersachsen'),
|
||
('HB', 'Bremen'),
|
||
('NW', 'Nordrhein-Westfalen'),
|
||
('HE', 'Hessen'),
|
||
('RP', 'Rheinland-Pfalz'),
|
||
('BW', 'Baden-Württemberg'),
|
||
('BY', 'Bayern'),
|
||
('SL', 'Saarland'),
|
||
('BE', 'Berlin'),
|
||
('BB', 'Brandenburg'),
|
||
('MV', 'Mecklenburg-Vorpommern'),
|
||
('SN', 'Sachsen'),
|
||
('ST', 'Sachsen-Anhalt'),
|
||
('TH', 'Thüringen'),
|
||
('𝚺', 'Gesamt')
|
||
]
|
||
|
||
def row_to_details(i):
|
||
regionalcode = regionalcodes[i] if i != 16 else 16
|
||
|
||
print(laendernamen[regionalcode])
|
||
|
||
shortname, name = laendernamen[regionalcode]
|
||
|
||
return {
|
||
'name': name,
|
||
'shortname': shortname,
|
||
'total_vaccinations': int(total_vaccinations_by_land[i]),
|
||
'total_vaccinations_percentage': vaccination_per_mille_by_land[i] / 10,
|
||
'vaccination_reason_age': int(vaccination_reason_age_by_land[i]),
|
||
'vaccination_reason_age_percentage': np.round(vaccination_reason_age_by_land[i] / total_vaccinations_by_land[i] * 100),
|
||
'vaccination_reason_job': int(vaccination_reason_job_by_land[i]),
|
||
'vaccination_reason_job_percentage': np.round(vaccination_reason_job_by_land[i] / total_vaccinations_by_land[i] * 100),
|
||
'vaccination_reason_medical': int(vaccination_reason_medical_by_land[i]),
|
||
'vaccination_reason_medical_percentage': np.round(vaccination_reason_medical_by_land[i] / total_vaccinations_by_land[i] * 100),
|
||
'vaccination_reason_oldhome': int(vaccination_reason_oldhome_by_land[i]),
|
||
'vaccination_reason_oldhome_percentage': np.round(vaccination_reason_oldhome_by_land[i] / total_vaccinations_by_land[i] * 100),
|
||
}
|
||
|
||
def row_to_details_formatted(i):
|
||
regionalcode = regionalcodes[i] if i != 16 else 16
|
||
|
||
print(laendernamen[regionalcode])
|
||
|
||
shortname, name = laendernamen[regionalcode]
|
||
|
||
return {
|
||
'name': name,
|
||
'shortname': shortname,
|
||
'total_vaccinations': '{:n}'.format(int(total_vaccinations_by_land[i])).replace('.', ' '),
|
||
'total_vaccinations_percentage': '{:.3n}'.format(np.round(vaccination_per_mille_by_land[i] / 10, 2)),
|
||
'vaccination_reason_age': '{:n}'.format(int(vaccination_reason_age_by_land[i])).replace('.', ' '),
|
||
'vaccination_reason_age_percentage': '{:n}'.format(np.round(vaccination_reason_age_by_land[i] / total_vaccinations_by_land[i] * 100)),
|
||
'vaccination_reason_job': '{:n}'.format(int(vaccination_reason_job_by_land[i])).replace('.', ' '),
|
||
'vaccination_reason_job_percentage': '{:n}'.format(np.round(vaccination_reason_job_by_land[i] / total_vaccinations_by_land[i] * 100)),
|
||
'vaccination_reason_medical': '{:n}'.format(int(vaccination_reason_medical_by_land[i])).replace('.', ' '),
|
||
'vaccination_reason_medical_percentage': '{:n}'.format(np.round(vaccination_reason_medical_by_land[i] / total_vaccinations_by_land[i] * 100)),
|
||
'vaccination_reason_oldhome': '{:n}'.format(int(vaccination_reason_oldhome_by_land[i])).replace('.', ' '),
|
||
'vaccination_reason_oldhome_percentage': '{:n}'.format(np.round(vaccination_reason_oldhome_by_land[i] / total_vaccinations_by_land[i] * 100))
|
||
}
|
||
|
||
|
||
for i in range(len(land_names) - 1):
|
||
|
||
details_per_land[land_names[i]] = row_to_details(i)
|
||
details_per_land_formatted[land_names[i]] = row_to_details_formatted(i)
|
||
|
||
details_total = row_to_details(16)
|
||
details_total_formatted = row_to_details_formatted(16)
|
||
|
||
'''
|
||
|
||
|
||
|
||
|
||
|
||
|
||
archive_folder = site_folder + 'archive/' + filename_stand
|
||
|
||
if os.path.isdir(archive_folder):
|
||
print('Archive folder {} already exists'.format(archive_folder))
|
||
else:
|
||
os.mkdir(archive_folder)
|
||
|
||
def check_recreate_plot(plot_name):
|
||
|
||
archive_plot_filename = '{}/{}'.format(archive_folder, plot_name)
|
||
|
||
if os.path.isfile(archive_plot_filename + '.pdf') and not force_renew:
|
||
print('Plot {} already exists'.format(plot_name))
|
||
return False
|
||
|
||
return True
|
||
|
||
def save_plot(plot_name):
|
||
|
||
folders = [archive_folder, site_folder]
|
||
file_formats = ['pdf', 'png']
|
||
file_template = '{folder}/{plot_name}.{format}'
|
||
|
||
for folder in folders:
|
||
for format in file_formats:
|
||
plt.savefig(file_template.format(folder=folder, plot_name=plot_name, format=format))
|
||
|
||
print('Created plot {} as {}'.format(plot_name, file_formats))
|
||
|
||
|
||
def plot_vaccination_bar_graph_total_time():
|
||
|
||
plot_name = 'vaccination_bar_graph_total_time'
|
||
if not check_recreate_plot(plot_name):
|
||
return
|
||
|
||
fig, ax = plt.subplots(1)
|
||
|
||
|
||
plt.title(
|
||
'Tägliche Impfrate (Erst- und Zweitimpfung übereinander)\n'
|
||
'Datenquelle: RKI, Stand: {}. Erstellung: {}, Ersteller: Benedikt Bastin, Lizenz: CC BY-SA 4.0\n'.format(
|
||
print_stand, print_today
|
||
)
|
||
)
|
||
|
||
ax.grid()
|
||
|
||
ax.bar(dates, data_first_vaccination['daily'], label='Tägliche Erstimpfungen', color='blue')
|
||
ax.bar(dates, data_second_vaccination['daily'], label='Tägliche Zweitimpfungen', color='lightblue', bottom=data_first_vaccination['daily'])
|
||
|
||
ax.set_ylim([0, np.max(data_first_vaccination['daily']) + np.max(data_second_vaccination['daily'])])
|
||
|
||
ax.legend(loc='upper left')
|
||
ax.get_yaxis().get_major_formatter().set_scientific(False)
|
||
|
||
ax.set_xlabel('Datum')
|
||
ax.set_ylabel('Tägliche Impfungen')
|
||
|
||
save_plot(plot_name)
|
||
plt.close()
|
||
|
||
|
||
plot_vaccination_bar_graph_total_time()
|
||
|
||
def plot_vaccination_bar_graph_total_time_by_week():
|
||
|
||
plot_name = 'vaccination_bar_graph_total_time_by_week'
|
||
if not check_recreate_plot(plot_name):
|
||
return
|
||
|
||
fig, ax = plt.subplots(1)
|
||
|
||
|
||
plt.title(
|
||
'Wöchentliche Impfrate (Erst- und Zweitimpfung übereinander)\n'
|
||
'Datenquelle: RKI, Stand: {}. Erstellung: {}, Ersteller: Benedikt Bastin, Lizenz: CC BY-SA 4.0\n'.format(
|
||
print_stand, print_today
|
||
)
|
||
)
|
||
|
||
ax.grid()
|
||
|
||
w = [w.day(3) for w in data_first_vaccination['vaccinations_by_week'].keys()]
|
||
|
||
f = list(data_first_vaccination['vaccinations_by_week'].values())
|
||
s = list(data_second_vaccination['vaccinations_by_week'].values())
|
||
|
||
bar1 = ax.bar(w, f, label='Wöchentliche Erstimpfungen', color='blue', width=6.8)
|
||
bar2 = ax.bar(w, s, label='Wöchentliche Zweitimpfungen', color='lightblue', width=6.8, bottom=f)
|
||
|
||
i = 0
|
||
|
||
for r1, r2 in zip(bar1, bar2):
|
||
|
||
x = r1.get_x() + r1.get_width() / 2.0
|
||
|
||
h1 = math.floor(r1.get_height() / 1000)
|
||
h2 = math.floor(r2.get_height() / 1000)
|
||
hg = math.floor((r1.get_height() + r2.get_height()) / 1000)
|
||
|
||
if h1 > 30:
|
||
plt.text(x, h1 * 500, f'{h1:5n} k'.replace('.', ' '), ha='center', va='center', color='white')
|
||
|
||
if h2 > 30:
|
||
plt.text(x, h1 * 1000 + h2 * 500, f'{h2:5n} k'.replace('.', ' '), ha='center', va='center', color='black')
|
||
|
||
plt.text(x, hg * 1000, f'{hg:5n} k'.replace('.', ' '), ha='center', va='bottom')
|
||
|
||
if i == 12:
|
||
# Woche der AstraZeneca-Aussetzung
|
||
plt.annotate('AstraZeneca-Aussetzung', (x, hg * 1000 + 50000),
|
||
xytext=(x, ax.get_ylim()[1]),
|
||
arrowprops={
|
||
'arrowstyle': '->'
|
||
},
|
||
bbox={
|
||
'boxstyle': 'square',
|
||
'fc': 'white',
|
||
'ec': 'black'
|
||
})
|
||
|
||
i = i + 1
|
||
|
||
|
||
ax.legend(loc='upper left')
|
||
ax.get_xaxis().set_major_formatter(DateFormatter('%Y-w%W'))
|
||
ax.get_xaxis().set_major_locator(WeekdayLocator(3, 2))
|
||
ax.get_yaxis().get_major_formatter().set_scientific(False)
|
||
|
||
ax.set_xlabel('Datum')
|
||
ax.set_ylabel('Wöchentliche Impfungen')
|
||
|
||
save_plot(plot_name)
|
||
plt.close()
|
||
|
||
plot_vaccination_bar_graph_total_time_by_week()
|
||
|
||
def plot_vaccination_bar_graph_total_time_two_bars():
|
||
|
||
plot_name = 'vaccination_bar_graph_total_time_two_bars'
|
||
if not check_recreate_plot(plot_name):
|
||
return
|
||
|
||
fig, ax = plt.subplots(1)
|
||
|
||
|
||
plt.title(
|
||
'Tägliche Impfrate (Erst- und Zweitimpfung nebeneinander)\n'
|
||
'Datenquelle: RKI, Stand: {}. Erstellung: {}, Ersteller: Benedikt Bastin, Lizenz: CC BY-SA 4.0\n'.format(
|
||
print_stand, print_today
|
||
)
|
||
)
|
||
|
||
ax.grid()
|
||
|
||
date_numbers = date2num(dates)
|
||
|
||
ax.bar(date_numbers - 0.2, data_first_vaccination['daily'], width=0.4, label='Tägliche Erstimpfungen', color='blue')
|
||
ax.bar(date_numbers + 0.2, data_second_vaccination['daily'], width=0.4, label='Tägliche Zweitimpfungen', color='lightblue')
|
||
|
||
ax.set_ylim([0, np.max(data_first_vaccination['daily']) + np.max(data_second_vaccination['daily'])])
|
||
|
||
ax.legend(loc='upper left')
|
||
ax.xaxis_date()
|
||
ax.get_yaxis().get_major_formatter().set_scientific(False)
|
||
|
||
ax.set_xlabel('Datum')
|
||
ax.set_ylabel('Tägliche Impfungen')
|
||
|
||
save_plot(plot_name)
|
||
plt.close()
|
||
|
||
plot_vaccination_bar_graph_total_time_two_bars()
|
||
|
||
def plot_vaccination_bar_graph_compare_both_vaccinations():
|
||
|
||
plot_name = 'vaccination_bar_graph_compare_both_vaccinations'
|
||
if not check_recreate_plot(plot_name):
|
||
return
|
||
|
||
fig, ax = plt.subplots(1)
|
||
|
||
|
||
plt.title(
|
||
'Tägliche Impfrate (Erst- und Zweitimpfung um 21 Tage versetzt)\n'
|
||
'Datenquelle: RKI, Stand: {}. Erstellung: {}, Ersteller: Benedikt Bastin, Lizenz: CC BY-SA 4.0\n'.format(
|
||
print_stand, print_today
|
||
)
|
||
)
|
||
|
||
ax.grid()
|
||
|
||
date_numbers_first = date2num(dates + datetime.timedelta(days=21))
|
||
date_numbers_second = date2num(dates)
|
||
|
||
ax.bar(date_numbers_first - 0.2, data_first_vaccination['daily'], width=0.4, label='Tägliche Erstimpfungen', color='blue')
|
||
ax.bar(date_numbers_second + 0.2, data_second_vaccination['daily'], width=0.4, label='Tägliche Zweitimpfungen', color='lightblue')
|
||
|
||
ax.set_ylim([0, np.max([np.max(data_first_vaccination['daily']), np.max(data_second_vaccination['daily'])])])
|
||
|
||
ax.legend(loc='upper left')
|
||
ax.xaxis_date()
|
||
ax.get_yaxis().get_major_formatter().set_scientific(False)
|
||
|
||
ax.set_xlabel('Datum')
|
||
ax.set_ylabel('Tägliche Impfungen')
|
||
|
||
save_plot(plot_name)
|
||
plt.close()
|
||
|
||
plot_vaccination_bar_graph_compare_both_vaccinations()
|
||
|
||
def plot_cumulative_two_vaccinations():
|
||
|
||
plot_name = 'cumulative_two_vaccinations'
|
||
if not check_recreate_plot(plot_name):
|
||
return
|
||
|
||
fig, ax = plt.subplots(1)
|
||
|
||
|
||
plt.title(
|
||
'Kumulative Impfrate (Erst- und Zweitimpfung)\n'
|
||
'Datenquelle: RKI, Stand: {}. Erstellung: {}, Ersteller: Benedikt Bastin, Lizenz: CC BY-SA 4.0\n'.format(
|
||
print_stand, print_today
|
||
)
|
||
)
|
||
|
||
ax.grid()
|
||
|
||
first_vaccinations_cumulative = data_first_vaccination['cumulative']
|
||
second_vaccinations_cumulative = data_second_vaccination['cumulative']
|
||
|
||
ax.fill_between(dates, first_vaccinations_cumulative, label='Erstimpfungen', color='blue')
|
||
ax.fill_between(dates, second_vaccinations_cumulative, label='Zweitimpfungen', color='lightblue')
|
||
|
||
ax.set_ylim([0, first_vaccinations_cumulative[-1]])
|
||
|
||
ax.legend(loc='upper left')
|
||
ax.xaxis_date()
|
||
ax.get_yaxis().get_major_formatter().set_scientific(False)
|
||
|
||
ax.set_xlabel('Datum')
|
||
ax.set_ylabel('Kumulative Impfungen')
|
||
|
||
save_plot(plot_name)
|
||
plt.close()
|
||
|
||
|
||
plot_cumulative_two_vaccinations()
|
||
|
||
def plot_cumulative_two_vaccinations_percentage():
|
||
|
||
plot_name = 'cumulative_two_vaccinations_percentage'
|
||
if not check_recreate_plot(plot_name):
|
||
return
|
||
|
||
fig, ax = plt.subplots(1)
|
||
|
||
|
||
plt.title(
|
||
'Kumulative Impfrate (Erst- und Zweitimpfung) in Prozent der Bevökerung Deutschlands ({} Einwohner)\n'
|
||
'Datenquelle: RKI, Stand: {}. Erstellung: {}, Ersteller: Benedikt Bastin, Lizenz: CC BY-SA 4.0\n'.format(
|
||
'{:n}'.format(einwohner_deutschland).replace('.', ' '),
|
||
print_stand, print_today
|
||
)
|
||
)
|
||
|
||
ax.grid()
|
||
|
||
first_vaccinations_cumulative = data_first_vaccination['cumulative'] / einwohner_deutschland
|
||
second_vaccinations_cumulative = data_second_vaccination['cumulative'] / einwohner_deutschland
|
||
|
||
ax.fill_between(dates, first_vaccinations_cumulative, label='Erstimpfungen', color='blue')
|
||
ax.fill_between(dates, second_vaccinations_cumulative, label='Zweitimpfungen', color='lightblue')
|
||
|
||
ax.set_ylim([0, 1])
|
||
|
||
ax.legend(loc='upper left')
|
||
ax.xaxis_date()
|
||
ax.yaxis.set_major_formatter(mtick.PercentFormatter(1.0))
|
||
|
||
ax.set_xlabel('Datum')
|
||
ax.set_ylabel('Kumulative Impfungen')
|
||
|
||
save_plot(plot_name)
|
||
plt.close()
|
||
|
||
|
||
plot_cumulative_two_vaccinations_percentage()
|
||
|
||
|
||
def plot_people_between_first_and_second():
|
||
|
||
plot_name = 'people_between_first_and_second'
|
||
if not check_recreate_plot(plot_name):
|
||
return
|
||
|
||
fig, ax = plt.subplots(1)
|
||
|
||
|
||
plt.title(
|
||
'Personen zwischen Erst- und Zweitimpfung\n'
|
||
'Datenquelle: RKI, Stand: {}. Erstellung: {}, Ersteller: Benedikt Bastin, Lizenz: CC BY-SA 4.0\n'.format(
|
||
print_stand, print_today
|
||
)
|
||
)
|
||
|
||
ax.grid()
|
||
|
||
first_vaccinations_cumulative = data_first_vaccination['cumulative']
|
||
second_vaccinations_cumulative = np.nan_to_num(data_second_vaccination['cumulative'], nan=0)
|
||
|
||
people_between = first_vaccinations_cumulative - second_vaccinations_cumulative
|
||
|
||
ax.plot(dates, people_between, label='Personen zwischen Erst- und Zweitimpfung', color='darkblue')
|
||
|
||
ax.bar(dates, data_first_vaccination['daily'], color='blue', label='Erstimpfungen')
|
||
ax.bar(dates, -data_second_vaccination['daily'], color='lightblue', label='Zweitimpfungen')
|
||
|
||
ax.legend(loc='upper left')
|
||
ax.xaxis_date()
|
||
ax.get_yaxis().get_major_formatter().set_scientific(False)
|
||
|
||
ax.set_xlabel('Datum')
|
||
ax.set_ylabel('Personen zwischen Erst- und Zweitimpfung')
|
||
|
||
save_plot(plot_name)
|
||
plt.close()
|
||
|
||
|
||
plot_people_between_first_and_second()
|
||
|
||
def plot_vaccination_rate():
|
||
|
||
plot_name = 'vaccination_rate'
|
||
if not check_recreate_plot(plot_name):
|
||
return
|
||
|
||
fig, ax = plt.subplots(1)
|
||
|
||
|
||
plt.title(
|
||
'Tägliche Impfrate sowie durchschnittliche Impfrate\n'
|
||
'Datenquelle: RKI, Stand: {}. Erstellung: {}, Ersteller: Benedikt Bastin, Lizenz: CC BY-SA 4.0\n'.format(
|
||
print_stand, print_today
|
||
)
|
||
)
|
||
|
||
ax.plot(dates, data_first_vaccination['daily'], label='Tägliche Erstimpfrate', color='blue', linewidth=0.5)
|
||
ax.plot(dates, data_second_vaccination['daily'], label='Tägliche Zweitimpfrate', color='lightblue', linewidth=0.5)
|
||
|
||
ax.plot(dates, data_first_vaccination['vaccination_rates_daily_rolling_average'], color='blue', linewidth=2, label='Erstimpfrate über sieben Tage')
|
||
ax.plot(dates, data_second_vaccination['vaccination_rates_daily_rolling_average'], color='lightblue', linewidth=2, label='Zweitimpfrate über sieben Tage')
|
||
|
||
|
||
ax.plot(dates, data_first_vaccination['mean_vaccination_rates_daily'], color='violet', label='Durchschnittliche Erstimpfrate\nbis zu diesem Tag (inkl.)')
|
||
ax.plot(dates, data_second_vaccination['mean_vaccination_rates_daily'], color='magenta', label='Durchschnittliche Zweitimpfrate\nbis zu diesem Tag (inkl.)')
|
||
|
||
|
||
ax.grid(True)
|
||
|
||
|
||
ax.legend(loc='upper left')
|
||
ax.get_yaxis().get_major_formatter().set_scientific(False)
|
||
|
||
ax.set_xlabel('Datum')
|
||
ax.set_ylabel('Impfrate [Impfungen/Tag]')
|
||
|
||
save_plot(plot_name)
|
||
plt.close()
|
||
|
||
plot_vaccination_rate()
|
||
|
||
def plot_vaccination_done_days():
|
||
|
||
plot_name = 'vaccination_done_days'
|
||
if not check_recreate_plot(plot_name):
|
||
return
|
||
|
||
fig, ax = plt.subplots(1)
|
||
|
||
|
||
plt.title(
|
||
'Lin. Extrapolation der Erstimpfungen bis 70 % der Bevölkerung anhand der durchschn. Impfrate (Anzahl Tage, Gesamt und 7 Tage)\n'
|
||
'Datenquelle: RKI, Stand: {}. Erstellung: {}, Ersteller: Benedikt Bastin, Lizenz: CC BY-SA 4.0\n'.format(
|
||
print_stand, print_today
|
||
)
|
||
)
|
||
d = data_first_vaccination
|
||
|
||
days_remaining_daily = np.ceil((einwohner_deutschland * 0.7 - d['cumulative']) / (d['mean_vaccination_rates_daily']))
|
||
days_remaining_rolling = np.ceil((einwohner_deutschland * 0.7 - d['cumulative']) / (d['vaccination_rates_daily_rolling_average']))
|
||
|
||
ax.set_ylim(0, 2500)
|
||
|
||
ax.plot(dates, days_remaining_daily, label='Durchschnitt Gesamt', linewidth=0.5)
|
||
ax.plot(dates, days_remaining_rolling, label='Durchschnitt 7 Tage', linewidth=2)
|
||
|
||
ax.grid(True)
|
||
|
||
|
||
ax.legend(loc='upper right')
|
||
ax.get_yaxis().get_major_formatter().set_scientific(False)
|
||
|
||
ax.set_xlabel('Datum')
|
||
ax.set_ylabel('Tage, bis 70 % erreicht sind')
|
||
|
||
save_plot(plot_name)
|
||
plt.close()
|
||
|
||
plot_vaccination_done_days()
|
||
|
||
def plot_vaccination_done_dates():
|
||
|
||
plot_name = 'vaccination_done_dates'
|
||
if not check_recreate_plot(plot_name):
|
||
return
|
||
|
||
fig, ax = plt.subplots(1)
|
||
|
||
|
||
plt.title(
|
||
'Lin. Extrapolation der Erstimpfungen bis 70 % der Bevölkerung anhand der durchschn. Impfrate (Datum, Gesamt und 7 Tage)\n'
|
||
'Datenquelle: RKI, Stand: {}. Erstellung: {}, Ersteller: Benedikt Bastin, Lizenz: CC BY-SA 4.0\n'.format(
|
||
print_stand, print_today
|
||
)
|
||
)
|
||
d = data_first_vaccination
|
||
|
||
#print(d['cumulative'])
|
||
#print(np.sum(d['daily']))
|
||
|
||
#print((einwohner_deutschland - d['cumulative'])[:-1] - d['to_be_vaccinated'])
|
||
|
||
|
||
days_remaining_daily = np.ceil((einwohner_deutschland * 0.7 - d['cumulative']) / (d['mean_vaccination_rates_daily']))
|
||
days_remaining_rolling = np.ceil((einwohner_deutschland * 0.7 - d['cumulative']) / (d['vaccination_rates_daily_rolling_average']))
|
||
|
||
dates_daily = [today + datetime.timedelta(days) for days in days_remaining_daily]
|
||
dates_rolling = [today + datetime.timedelta(days) for days in days_remaining_rolling.dropna()]
|
||
|
||
#print(dates_rolling)
|
||
|
||
ax.set_ylim(today, today + datetime.timedelta(int(np.max(days_remaining_rolling) * 1.05)))
|
||
|
||
ax.plot(dates, dates_daily, label='Durchschnitt Gesamt', linewidth=0.5)
|
||
ax.plot(dates[6:], dates_rolling, label='Durchschnitt 7 Tage', linewidth=2)
|
||
|
||
ax.grid(True)
|
||
|
||
|
||
ax.legend(loc='upper right')
|
||
|
||
ax.set_xlabel('Datum')
|
||
ax.set_ylabel('Datum, an dem 70 % erreicht sind')
|
||
|
||
save_plot(plot_name)
|
||
plt.close()
|
||
|
||
plot_vaccination_done_dates()
|
||
|
||
def render_dashboard():
|
||
dashboard_filename = 'site/index.xhtml'
|
||
dashboard_archive_filename = 'site/archive/{}/index.xhtml'.format(filename_stand)
|
||
stylesheet_filename = 'site/rki-dashboard.css'
|
||
stylesheet_archive_filename = 'site/archive/{}/rki-dashboard.css'.format(filename_stand)
|
||
|
||
if os.path.isfile(dashboard_archive_filename) and not force_renew:
|
||
print('Dashboard {} already exists'.format(dashboard_archive_filename))
|
||
return
|
||
|
||
from jinja2 import Template, Environment, FileSystemLoader, select_autoescape
|
||
env = Environment(
|
||
loader=FileSystemLoader('./'),
|
||
autoescape=select_autoescape(['html', 'xml', 'xhtml'])
|
||
)
|
||
|
||
german_text_date_format = '%d. %B %Y'
|
||
df = german_text_date_format
|
||
|
||
german_text_datetime_format = '%d. %B %Y, %H:%M:%S Uhr'
|
||
dtf = german_text_datetime_format
|
||
|
||
latest_dashboard_filename = site_folder + 'index.xhtml'
|
||
archive_dashboard_filename = archive_folder
|
||
|
||
template = env.get_template('dashboard_template.xhtml')
|
||
template.stream(
|
||
stand = stand_date.strftime(dtf),
|
||
filename_stand = filename_stand,
|
||
einwohner_deutschland = '{:n}'.format(einwohner_deutschland).replace('.', ' '),
|
||
herd_immunity = '{:n}'.format(int(herd_immunity * 100)),
|
||
target_date_for_herd_immunity = target_date_for_herd_immunity,
|
||
target_date_for_herd_immunity_str = target_date_for_herd_immunity.strftime('%d. %B %Y'),
|
||
days_until_target = days_until_target,
|
||
data_first_vaccination = data_first_vaccination,
|
||
data_second_vaccination = data_second_vaccination,
|
||
#details_per_land = dict(sorted(details_per_land_formatted.items(), key=lambda item: item[0])),
|
||
#details_total = details_total_formatted
|
||
figures = [
|
||
{
|
||
'index': 1,
|
||
'filename': 'vaccination_bar_graph_total_time',
|
||
'caption': 'Tägliche Impfrate (Erst- und Zweitimpfung übereinander)'
|
||
},{
|
||
'index': 2,
|
||
'filename': 'vaccination_bar_graph_total_time_by_week',
|
||
'caption': 'Wöchentliche Impfrate (Erst- und Zweitimpfung übereinander)'
|
||
},{
|
||
'index': 3,
|
||
'filename': 'vaccination_bar_graph_total_time_two_bars',
|
||
'caption': 'Tägliche Impfrate (Erst- und Zweitimpfung nebeneinander)'
|
||
},{
|
||
'index': 4,
|
||
'filename': 'vaccination_bar_graph_compare_both_vaccinations',
|
||
'caption': 'Tägliche Impfrate (Erst- und Zweitimpfung nebeneinander)'
|
||
},{
|
||
'index': 5,
|
||
'filename': 'cumulative_two_vaccinations',
|
||
'caption': 'Kumulative Impfrate (Erst- und Zweitimpfung)'
|
||
},{
|
||
'index': 6,
|
||
'filename': 'cumulative_two_vaccinations_percentage',
|
||
'caption': 'Kumulative Impfrate (Erst- und Zweitimpfung) in Prozent der Bevölkerung Deutschlands'
|
||
},{
|
||
'index': 7,
|
||
'filename': 'people_between_first_and_second',
|
||
'caption': 'Anzahl der Personen zwischen Erst- und Zweitimpfung, also Personen, die die erste Impfung erhalten haben, die zweite aber noch nicht'
|
||
},{
|
||
'index': 8,
|
||
'filename': 'vaccination_rate',
|
||
'caption': 'Tägliche Impfrate sowie durchschnittliche Impfrate'
|
||
},{
|
||
'index': 9,
|
||
'filename': 'vaccination_done_days',
|
||
'caption': 'Lineare Extrapolation bis 70 % der Bevölkerung anhand der Erstimpfungen der durchschnittlichen Impfrate (Anzahl Tage, Gesamt und 7 Tage)'
|
||
},{
|
||
'index': 10,
|
||
'filename': 'vaccination_done_dates',
|
||
'caption': 'Lineare Extrapolation bis 70 % der Bevölkerung anhand der Erstimpfungen der durchschnittlichen Impfrate (Datum, Gesamt und 7 Tage)'
|
||
}
|
||
]
|
||
).dump('site/index.xhtml')
|
||
|
||
shutil.copyfile(dashboard_filename, dashboard_archive_filename)
|
||
shutil.copyfile(stylesheet_filename, stylesheet_archive_filename)
|
||
|
||
print('Created dashboard')
|
||
|
||
render_dashboard()
|