1
0
Fork 0

feat: New plot for vaccination rates

This commit is contained in:
Benedikt Bastin 2021-02-17 11:55:30 +01:00
parent 3e19d3462a
commit a3bf0654f9

63
plot.py
View file

@ -14,6 +14,7 @@ import requests as req
import locale
import os.path
import shutil
import math
from matplotlib.dates import date2num
import matplotlib.ticker as mtick
@ -67,7 +68,6 @@ dates = impfungen['Datum']
start_of_reporting_date = dates.iloc[0].date()
def calculate_vaccination_data(data):
cumulative = np.cumsum(data)
total = int(np.sum(data))
total_percentage = float(total) / einwohner_deutschland * 100
@ -80,7 +80,11 @@ def calculate_vaccination_data(data):
days_since_start_of_vaccination = (last_date - start_of_vaccination_date).days
days_since_start_of_reporting = (last_date - start_of_reporting_date).days
mean_all_time = np.mean(data[start_of_vaccination_index:])
valid_data = data[start_of_vaccination_index:]
cumulative = np.concatenate(([math.nan] * (days_since_start_of_reporting - days_since_start_of_vaccination), np.cumsum(valid_data)))
mean_all_time = np.mean(valid_data)
mean_seven_days = np.mean(data[-7:])
def extrapolate(rate, to_be_vaccinated):
@ -110,7 +114,7 @@ def calculate_vaccination_data(data):
extrapolation_mean_seven_days = extrapolate(mean_seven_days, to_be_vaccinated)
mean_vaccination_rates_daily = np.round(cumulative / range(1, len(cumulative) + 1))
vaccination_rates_daily_rolling_average = data.rolling(7).mean()
vaccinations_missing_until_target = einwohner_deutschland * 0.7 - total
vaccination_rate_needed_for_target = vaccinations_missing_until_target / days_until_target
@ -131,6 +135,7 @@ def calculate_vaccination_data(data):
'extrapolation_last_rate': extrapolation_last_rate,
'extrapolation_mean_seven_days': extrapolation_mean_seven_days,
'mean_vaccination_rates_daily': mean_vaccination_rates_daily,
'vaccination_rates_daily_rolling_average': vaccination_rates_daily_rolling_average,
'vaccinations_missing_until_target': int(np.floor(vaccinations_missing_until_target)),
'vaccination_rate_needed_for_target': int(np.floor(vaccination_rate_needed_for_target)),
'vaccination_rate_needed_for_target_percentage': vaccination_rate_needed_for_target_percentage
@ -506,7 +511,7 @@ def plot_cumulative_two_vaccinations():
ax.fill_between(dates, first_vaccinations_cumulative, label='Erstimpfungen', color='blue')
ax.fill_between(dates, second_vaccinations_cumulative, label='Zweitimpfungen', color='lightblue')
ax.set_ylim([0, first_vaccinations_cumulative.iloc[-1]])
ax.set_ylim([0, first_vaccinations_cumulative[-1]])
ax.legend(loc='upper left')
ax.xaxis_date()
@ -597,7 +602,7 @@ def plot_people_between_first_and_second():
ax.grid()
first_vaccinations_cumulative = data_first_vaccination['cumulative']
second_vaccinations_cumulative = data_second_vaccination['cumulative']
second_vaccinations_cumulative = np.nan_to_num(data_second_vaccination['cumulative'], nan=0)
people_between = first_vaccinations_cumulative - second_vaccinations_cumulative
@ -625,6 +630,54 @@ def plot_people_between_first_and_second():
plot_people_between_first_and_second()
def plot_vaccination_rate():
archive_plot_filename = '{}/vaccination_rate'.format(archive_folder)
latest_plot_filename = '{}/vaccination_rate'.format(site_folder)
#if os.path.isfile(archive_plot_filename + '.pdf'):
#print('Plot {} already exists'.format(archive_plot_filename))
#return
fig, ax = plt.subplots(1)
plt.title(
'Tägliche Impfrate sowie durchschnittliche Impfrate\n'
'Datenquelle: RKI, Stand: {}. Erstellung: {}, Ersteller: Benedikt Bastin, Lizenz: CC BY-SA 4.0\n'.format(
print_stand, print_today
)
)
ax.plot(dates, data_first_vaccination['daily'], label='Tägliche Erstimpfrate', color='blue', linewidth=0.5)
ax.plot(dates, data_second_vaccination['daily'], label='Tägliche Zweitimpfrate', color='lightblue', linewidth=0.5)
ax.plot(dates, data_first_vaccination['vaccination_rates_daily_rolling_average'], color='blue', linewidth=2, label='Erstimpfrate über sieben Tage')
ax.plot(dates, data_second_vaccination['vaccination_rates_daily_rolling_average'], color='lightblue', linewidth=2, label='Zweitimpfrate über sieben Tage')
ax.plot(dates, data_first_vaccination['mean_vaccination_rates_daily'], color='violet', label='Durchschnittliche Erstimpfrate\nbis zu diesem Tag (inkl.)')
ax.plot(dates, data_second_vaccination['mean_vaccination_rates_daily'], color='magenta', label='Durchschnittliche Zweitimpfrate\nbis zu diesem Tag (inkl.)')
ax.grid(True)
ax.legend(loc='upper left')
ax.get_yaxis().get_major_formatter().set_scientific(False)
ax.set_xlabel('Datum')
ax.set_ylabel('Impfrate [Impfungen/Tag]')
plt.savefig(archive_plot_filename + '.pdf')
plt.savefig(archive_plot_filename + '.png')
plt.savefig(latest_plot_filename + '.pdf')
plt.savefig(latest_plot_filename + '.png')
plt.close()
print('Created plot {} as pdf and png'.format(archive_plot_filename))
plot_vaccination_rate()
def render_dashboard():
dashboard_filename = 'site/index.xhtml'