feat: New plot for vaccination rates
This commit is contained in:
parent
3e19d3462a
commit
a3bf0654f9
1 changed files with 58 additions and 5 deletions
63
plot.py
63
plot.py
|
@ -14,6 +14,7 @@ import requests as req
|
|||
import locale
|
||||
import os.path
|
||||
import shutil
|
||||
import math
|
||||
|
||||
from matplotlib.dates import date2num
|
||||
import matplotlib.ticker as mtick
|
||||
|
@ -67,7 +68,6 @@ dates = impfungen['Datum']
|
|||
start_of_reporting_date = dates.iloc[0].date()
|
||||
|
||||
def calculate_vaccination_data(data):
|
||||
cumulative = np.cumsum(data)
|
||||
|
||||
total = int(np.sum(data))
|
||||
total_percentage = float(total) / einwohner_deutschland * 100
|
||||
|
@ -80,7 +80,11 @@ def calculate_vaccination_data(data):
|
|||
days_since_start_of_vaccination = (last_date - start_of_vaccination_date).days
|
||||
days_since_start_of_reporting = (last_date - start_of_reporting_date).days
|
||||
|
||||
mean_all_time = np.mean(data[start_of_vaccination_index:])
|
||||
valid_data = data[start_of_vaccination_index:]
|
||||
|
||||
cumulative = np.concatenate(([math.nan] * (days_since_start_of_reporting - days_since_start_of_vaccination), np.cumsum(valid_data)))
|
||||
|
||||
mean_all_time = np.mean(valid_data)
|
||||
mean_seven_days = np.mean(data[-7:])
|
||||
|
||||
def extrapolate(rate, to_be_vaccinated):
|
||||
|
@ -110,7 +114,7 @@ def calculate_vaccination_data(data):
|
|||
extrapolation_mean_seven_days = extrapolate(mean_seven_days, to_be_vaccinated)
|
||||
|
||||
mean_vaccination_rates_daily = np.round(cumulative / range(1, len(cumulative) + 1))
|
||||
|
||||
vaccination_rates_daily_rolling_average = data.rolling(7).mean()
|
||||
|
||||
vaccinations_missing_until_target = einwohner_deutschland * 0.7 - total
|
||||
vaccination_rate_needed_for_target = vaccinations_missing_until_target / days_until_target
|
||||
|
@ -131,6 +135,7 @@ def calculate_vaccination_data(data):
|
|||
'extrapolation_last_rate': extrapolation_last_rate,
|
||||
'extrapolation_mean_seven_days': extrapolation_mean_seven_days,
|
||||
'mean_vaccination_rates_daily': mean_vaccination_rates_daily,
|
||||
'vaccination_rates_daily_rolling_average': vaccination_rates_daily_rolling_average,
|
||||
'vaccinations_missing_until_target': int(np.floor(vaccinations_missing_until_target)),
|
||||
'vaccination_rate_needed_for_target': int(np.floor(vaccination_rate_needed_for_target)),
|
||||
'vaccination_rate_needed_for_target_percentage': vaccination_rate_needed_for_target_percentage
|
||||
|
@ -506,7 +511,7 @@ def plot_cumulative_two_vaccinations():
|
|||
ax.fill_between(dates, first_vaccinations_cumulative, label='Erstimpfungen', color='blue')
|
||||
ax.fill_between(dates, second_vaccinations_cumulative, label='Zweitimpfungen', color='lightblue')
|
||||
|
||||
ax.set_ylim([0, first_vaccinations_cumulative.iloc[-1]])
|
||||
ax.set_ylim([0, first_vaccinations_cumulative[-1]])
|
||||
|
||||
ax.legend(loc='upper left')
|
||||
ax.xaxis_date()
|
||||
|
@ -597,7 +602,7 @@ def plot_people_between_first_and_second():
|
|||
ax.grid()
|
||||
|
||||
first_vaccinations_cumulative = data_first_vaccination['cumulative']
|
||||
second_vaccinations_cumulative = data_second_vaccination['cumulative']
|
||||
second_vaccinations_cumulative = np.nan_to_num(data_second_vaccination['cumulative'], nan=0)
|
||||
|
||||
people_between = first_vaccinations_cumulative - second_vaccinations_cumulative
|
||||
|
||||
|
@ -625,6 +630,54 @@ def plot_people_between_first_and_second():
|
|||
|
||||
plot_people_between_first_and_second()
|
||||
|
||||
def plot_vaccination_rate():
|
||||
|
||||
archive_plot_filename = '{}/vaccination_rate'.format(archive_folder)
|
||||
latest_plot_filename = '{}/vaccination_rate'.format(site_folder)
|
||||
|
||||
#if os.path.isfile(archive_plot_filename + '.pdf'):
|
||||
#print('Plot {} already exists'.format(archive_plot_filename))
|
||||
#return
|
||||
|
||||
fig, ax = plt.subplots(1)
|
||||
|
||||
|
||||
plt.title(
|
||||
'Tägliche Impfrate sowie durchschnittliche Impfrate\n'
|
||||
'Datenquelle: RKI, Stand: {}. Erstellung: {}, Ersteller: Benedikt Bastin, Lizenz: CC BY-SA 4.0\n'.format(
|
||||
print_stand, print_today
|
||||
)
|
||||
)
|
||||
|
||||
ax.plot(dates, data_first_vaccination['daily'], label='Tägliche Erstimpfrate', color='blue', linewidth=0.5)
|
||||
ax.plot(dates, data_second_vaccination['daily'], label='Tägliche Zweitimpfrate', color='lightblue', linewidth=0.5)
|
||||
|
||||
ax.plot(dates, data_first_vaccination['vaccination_rates_daily_rolling_average'], color='blue', linewidth=2, label='Erstimpfrate über sieben Tage')
|
||||
ax.plot(dates, data_second_vaccination['vaccination_rates_daily_rolling_average'], color='lightblue', linewidth=2, label='Zweitimpfrate über sieben Tage')
|
||||
|
||||
|
||||
ax.plot(dates, data_first_vaccination['mean_vaccination_rates_daily'], color='violet', label='Durchschnittliche Erstimpfrate\nbis zu diesem Tag (inkl.)')
|
||||
ax.plot(dates, data_second_vaccination['mean_vaccination_rates_daily'], color='magenta', label='Durchschnittliche Zweitimpfrate\nbis zu diesem Tag (inkl.)')
|
||||
|
||||
|
||||
ax.grid(True)
|
||||
|
||||
|
||||
ax.legend(loc='upper left')
|
||||
ax.get_yaxis().get_major_formatter().set_scientific(False)
|
||||
|
||||
ax.set_xlabel('Datum')
|
||||
ax.set_ylabel('Impfrate [Impfungen/Tag]')
|
||||
|
||||
plt.savefig(archive_plot_filename + '.pdf')
|
||||
plt.savefig(archive_plot_filename + '.png')
|
||||
plt.savefig(latest_plot_filename + '.pdf')
|
||||
plt.savefig(latest_plot_filename + '.png')
|
||||
plt.close()
|
||||
|
||||
print('Created plot {} as pdf and png'.format(archive_plot_filename))
|
||||
|
||||
plot_vaccination_rate()
|
||||
|
||||
def render_dashboard():
|
||||
dashboard_filename = 'site/index.xhtml'
|
||||
|
|
Loading…
Reference in a new issue